Abstract

<p>Tropical gravity wave activity is investigated using measurements of momentum flux obtained by superpressure balloons. The dataset contains 8 balloons that flew in the equatorial band from November 2019 to February 2020, for 2 to 3 months each, collecting data every 30s. The relation between gravity waves and deep convection was investigated using geostationary satellite data from the NOAA/NCEP GPM\_MERGEIR satellite data product, at 1 hour resolution. The amplitude of gravity wave momentum fluxes shows a clear dependence on the distance to the nearest convection site, with a strong decay as distance to convection increases. The largest values of momentum flux (more than 5 mPa) are only found in the vicinity of deep convection (< 200 km). The sensitivity to distance from convection is stronger for high frequency gravity waves (periods shorter than 30 minutes). Lower frequency waves tend to a non-zero, background value away from convection, supporting some background value in gravity-wave drag parameterizations. On the other hand, the wide range of momentum flux values close to the convection sites emphasizes the intermittent nature of gravity waves. This intermittency was also studied on a larger scale, using a 20° longitudinal grid of the recorded momentum flux in the deep tropics. The results highlight spatial variations of gravity wave activity, with the highest momentum flux recorded over the continent, and associated to higher intermittency.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.