Abstract
AbstractHall's condition is a simple requirement that a graph G and list assignment L must satisfy if G is to have a proper L‐colouring. The Hall number of G is the smallest integer m such that whenever the lists on the vertices each has size at least m and Hall's condition is satisfied a proper L‐colouring exists. Hilton and P.D. Johnson introduced the parameter and showed that a graph has Hall number 1 if and only if every block is a clique. In this paper we give a forbidden‐induced‐subgraph characterization of graphs with Hall number 2. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 81–100, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.