Abstract

The international GNSS monitoring and assessment system (iGMAS) tracking network has been established by China to track multi-GNSS satellites. A key feature of iGMAS stations is the capability to fully track new navigation signals from the recently deployed BDS-3 satellites. In addition to the B1I and B3I signals inherited from BDS-2 satellites, the BDS-3 satellites are capable of transmitting new open service signals, including B1C at 1575.42 MHz, B2a at 1176.45 MHz, and B2b at 1207.14 MHz. In this contribution, we present a comprehensive analysis and characterization of GNSS signals tracked by different receivers and antennas equipped in the iGMAS network, especially as they relate to BDS-3 signals. Signal characteristics are analyzed in terms of the carrier-to-noise density ratio for the different signals as measured by the receiver, as well as pseudo-range noise and multipath. Special attention is given to discussion of the satellite-induced code bias, which has been identified to exist in the code observations of BDS-2, and the inter-frequency clock bias (IFCB), which has been observed in the triple-frequency carrier phase combinations of GPS Block IIF and BDS-2 satellites. The results indicate that the satellite-induced code bias is negligible for all signals of BDS-3 satellites, while small IFCB variations with peak amplitudes of about 1 cm can be recognized in BDS-3 triple-carrier combinations.

Highlights

  • With the rapid development of the global navigation satellite system (GNSS), the China Satellite Navigation Office has initiated the international GNSS Monitoring and Assessment System to monitor and assess the performance and operational status of the Chinese BeiDou Navigation Satellite System (BDS), as well as to promote compatibility and interoperability among different GNSS constellations [1,2]

  • We focus on the assessment and characterization of GNSS signals tracked by the international GNSS Monitoring and Assessment System (iGMAS) network, especially for the signals from the eight recently deployed BDS-3 satellites

  • The GPS is restricted to Block IIF satellites that can simultaneously transmit L1/L2/L5 signals; the BDS-2 is confined to only medium earth orbit (MEO) satellites (C11, C12, and C14) for comparison; and the BDS-3 involves the eight satellites listed in Table 1 and examined in this study

Read more

Summary

Introduction

With the rapid development of the global navigation satellite system (GNSS), the China Satellite Navigation Office has initiated the international GNSS Monitoring and Assessment System (iGMAS) to monitor and assess the performance and operational status of the Chinese BeiDou Navigation Satellite System (BDS), as well as to promote compatibility and interoperability among different GNSS constellations [1,2]. As a backbone of iGMAS, a network of multi-GNSS monitoring stations has been set up around the globe to track multi-GNSS satellites. A key feature of iGMAS stations is the capability to track new BDS signals from recently deployed global system satellites. BDS-2 consists of five GEO, five inclined geostationary orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites, and has been providing official positioning, navigation and timing services over the Asia-Pacific area since December 27, 2012. Each of the BDS-2 satellites transmits signals in quadrature phase-shift keying (QPSK) modulation on three frequency bands, namely B1I at 1561.098 MHz, B2I at 1207.14 MHz, and B3I at 1268.52 MHz. BDS-3 is expected to provide greatly improved services to global users with 3 GEO, 3 IGSO, and 24 MEO satellites by 2020

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.