Abstract
High-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) in a mature grain play important roles in the formation of a glutenin macropolymer and gluten quality. To characterize the expressed glutenin genes of the bread wheat variety Xinmai 26 during seed development, a total of 18 full-length transcripts were obtained by the newly emerged third-generation RNA sequencing of the PacBio Sequel II platform, including 5 transcripts of HMW-GS genes and 13 transcripts of LMW-GS genes (8 intact genes and 5 pseudogenes). Combined with the patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), allelic types of the obtained glutenin genes were, respectively, determined, wherein molecular characterization deduced by transcript1528 (1Dx5) and transcript907 (Glu-A3c) indicated their great influence on dough quality. In addition, a specific functional marker dCAPS5 was developed for the single-nucleotide substitution at position 353 of the 1Dx5 subunit, which was further intensively compared with the other proposed markers to efficiently utilize the 1Dx5 subunit with the extra cysteine residue. This study provides an efficient method to accurately identify and utilize glutenin genes in bread wheat, which is helpful in understanding the contributions of glutenin genes to wheat quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.