Abstract

Glutamic acid decarboxylase activity associated with cerebral blood vessels appears to be part of a specific cerebrovascular system involving gamma-aminobutyric acid. This activity was characterized kinetically and pharmacologically and compared with that in brain and several nonneuronal tissues. Formation of gamma-aminobutyric acid from [14C]glutamate was measured in a soluble extract of pia-arachnoid blood vessels isolated from bovine brain. The vascular activity was like brain glutamate decarboxylase in that it required pyridoxal phosphate, was completely inhibited by aminooxyacetic acid, and had a similar affinity for glutamate. Cerebrovascular decarboxylase activity differed, however, from brain decarboxylase in that it was less sensitive to sulfhydryl reagents, was stimulated by 3-mercaptopropionic and cysteic acids, and was competitively inhibited by cysteine sulfinic acid. The glutamate decarboxylase activity of the cerebral vessels was similar to that in renal cortex and mesenteric blood vessels in its responses to sulfhydryl reagents and 3-mercaptopropionic acid. These findings are consistent with previous suggestions of a nonneuronal form of the enzyme and offer the possibility that synthesis of gamma-aminobutyric acid in cerebral blood vessels can be manipulated independently from that in neuronal tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.