Abstract
GlucosyltransferaseB, GtfC, and GtfD were purified by hydroxyapatite column chromatography, followed by ultrafiltration from the culture supernatant fluids of three Streptococcus milleri constructs (gift from Dr. H.K. Kuramitsu) which harbored individual gtf genes of Streptococcus mutans GS5. GtfB, GtfC, and GtfD were enzymatically active both in solution and in an experimental pellicle (HA-CWS-Gtf) formed by adsorbing Gtf onto the surface of clarified human whole saliva (CWS)-coated hydroxyapatite (HA). The Km values for sucrose for all three enzymes were lower when the enzyme was adsorbed to a surface, compared with when it was in solution. In solution phase assays, and in the absence of primer dextran, glucan production was enhanced 75% when both GtfB and GtfD were present in the reaction mixture, compared with the sum of the individual enzyme activities (p < 0.005). This enhancement did not occur when GtfC was additionally present, or when the GtfB+GtfD enzyme pair was adsorbed onto HA-CWS. In additional experiments, glucan formed by GtfB or GtfC, but not by GtfD, on a HA-CWS-Gtf surface increased adherence of Streptococcus mutans GS5 and Streptococcus sobrinus 6715 by seven- to nine-fold compared with adherence when no glucan was present on the pellicle surface (p < 0.001). Further, treatment of the HA-CWS-GtfB-glucan or HA-CWS-GtfC-glucan pellicle with alpha-1,6 dextranase significantly reduced adherence of both streptococcal strains (p < 0.001). These results show that GtfB, GtfC, and GtfD are enzymatically active in an adsorbed state and that the nature of their product glucan can influence the adherence of cariogenic oral streptococci to an experimental pellicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.