Abstract

Glu126 and Arg144 in the lactose permease are indispensable for substrate binding and probably form a charge-pair [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807]. Mutants with Glu126-->Ala or Arg144-->Ala do not bind ligand or catalyze lactose accumulation, efflux, exchange, downhill lactose translocation, or lactose-induced H+ influx. In contrast, mutants with conservative mutations (Glu126-->Asp or Arg144-->Lys) exhibit drastically different phenotypes. Arg144-->Lys permease accumulates lactose slowly to low levels, but does not bind ligand or catalyze equilibrium exchange, efflux, or lactose-induced H+ influx. In contrast, Glu126-->Asp permease catalyzes lactose accumulation and lactose-induced H+ influx to wild-type levels, but at significantly lower rates. Surprisingly, however, no significant exchange or efflux activity is observed. Glu126-->Asp permease exhibits about a 6-fold increase in the Km for active transport relative to wild-type permease with a comparable Vmax. Direct binding assays using flow dialysis demonstrate that mutant Glu126-->Asp binds p-nitrophenyl-alpha,D-galactopyranoside. Indirect binding assays utilizing substrate protection against [14C]-N-ethylmaleimide labeling of single-Cys148 permease reveal an apparent Kd of 3-5 mM for lactose and 15-20 microM for beta, D-galactopyranosyl-1-thio-beta,D-galactopyranoside (TDG). The affinity of Glu126-->Asp/Cys148 permease for lactose is markedly decreased (Kd > 80 mM), while TDG affinity is altered to a much lesser extent (Kd ca. 80 microM). The results extend the conclusion that a carboxylate at position 126 and a guanidinium group at position 144 are irreplaceable for substrate binding and support the idea that Arg144 plays a major role in substrate specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.