Abstract

In this work, glass fiber reinforced epoxy composites were fabricated. Epoxy resin was used as polymer matrix material and glass fiber was used as reinforcing material. The main focus of this work was to fabricate this composite material by the cheapest and easiest way. For this, hand layup method was used to fabricate glass fiber reinforced epoxy resin composites and TiO2 material was used as filler material. Six types of compositions were made with and without filler material keeping the glass fiber constant and changing the epoxy resin with respect to filler material addition. Mechanical properties such as tensile, impact, hardness, compression and flexural properties were investigated. Additionally, microscopic analysis was done. The experimental investigations show that without filler material the composites exhibit overall lower value in mechanical properties than with addition of filler material in the composites. The results also show that addition of filler material increases the mechanical properties but highest values were obtained for different filler material addition. From the obtained results, it was observed that composites filled by 15wt% of TiO2 particulate exhibited maximum tensile strength, 20wt% of TiO2 particulate exhibited maximum impact strength, 25wt% of TiO2 particulate exhibited maximum hardness value, 25wt% of TiO2 particulate exhibited maximum compressive strength, 20wt% of TiO2 particulate exhibited maximum flexural strength.

Highlights

  • Fibre reinforced polymer (FRP) are composites used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildings

  • The clustering or entanglement of particles and/or fibers in some areas and the irregularities may create resin poor areas and so weaken the forces of adhesions well as creating many of defects within the composites and other defects formed within the fiber layer itself and that this will lead to the generation of Abdullah Al Mahmood et al.: Characterization of Glass Fibre Reinforced Polymer Composite

  • Glass fiber reinforced epoxy resin composites were fabricated using hand lay up method

Read more

Summary

Introduction

Fibre reinforced polymer (FRP) are composites used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildings. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as glass fiber, carbon fiber, nanoparticles etc. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. Epoxy resins are widely used as matrix in many fiber reinforced composites; they are a class of thermoset materials of particular interest to structural engineers owing to the fact that they provide a unique balance of chemical and mechanical properties combined with wide processing versatility. Glass fibers are the most frequently used in structural constructions because of their specific strength properties [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call