Abstract

The genetic diversity of nuclear genomes of five Daucus species and seven Daucus carota L. subspecies involving 26 accessions was characterized with random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). AFLP produced more than four times as many discrete bands per reaction compared with RAPD analysis, while both AFLP and RAPD basically led to similar conclusions. The dendrograms constructed with both RAPD and AFLP revealed that all accessions of D. carota were grouped into a major cluster delimited from other Daucus species, in good agreement with the classification by morphological char-acteristics. All accessions of cultivated carrots [(D. carota ssp. sativus (Hoffm.) Arcang.] were clustered in the same group while the variation within D. carota was relatively extensive. Genetic diversity of mitochondrial genomes was also documented with RAPD for the same accessions. The mitochondrial dendrogram differed from that of the nuclear genome, suggesting that nuclear and mitochondrial genomes of some accessions had separate evolutionary histories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call