Abstract

Multidrug-resistant bacteria, such as vancomycin-resistant-Enterococcus (VRE), are an increasing problem in hospitalized patients. Some VRE strains can be resistant to most available antibiotics, thus, alternative strategies to antibiotics are urgently needed to combat these challenging pathogens. Infections caused by VRE frequently start by colonization of the intestinal tract, a crucial step that is impaired by the presence of the intestinal microbiota. Administration of antibiotics disrupts the microbiota, which promotes VRE intestinal colonization. Once VRE has colonized the gut, it reaches very high levels, which promotes its dissemination to other organs and its transfer to other patients. Despite the relevance of VRE gut colonization, very little is known about the genes encoded by this pathogen to colonize the gut and about the mechanisms by which the microbiota suppresses VRE gut colonization. In this thesis, we have utilized a previously described methodology (Zhang et al., 2017, BMC Genomics), based on the generation of a transposon mutant library coupled with high-throughput sequencing, in order to identify VRE encoded genes required for colonization of the mouse intestinal tract. In addition, we have performed metatranscriptomic analysis in mice to identify VRE genes specifically expressed in the gut. Our analysis has identified genes whose disruption significantly reduces VRE gut colonization in the large intestine. The genes that most affected VRE gut colonization encoded for proteins related to the uptake or transport of diverse nutrients such as carbohydrates (PTS mannose transporter subunit EIIAB, LacI family DNA-binding transcriptional regulator, N-acetylmuramic acid 6-phosphate etherase) or ions (phosphate ABC transporter ATP-binding protein and proteins from [Fe-S] cluster). The role of these genes in gut colonization has been confirmed through targeted mutagenesis and competition experiments against a wild type strain. Moreover, these genes affect gut colonization under different antibiotic treatments (clindamycin and vancomycin). To elucidate the mechanism by which each gene influences gut colonization, we have performed in vitro and ex vivo experiments besides transcriptomic analysis. In vitro experiments confirm that proteins from [Fe-S] cluster are involved in the transport of different forms of iron ions, mostly Fe3+. On the other hand, the PTS mannose transporter subunit EIIAB and N-acetylmuramic acid 6-phosphate etherase genes are required for the utilization of mannose and N-acetyl-muramic acid, respectively, sugars that are usually present in the intestinal environment. We have also confirmed that LacI family DNA-binding transcriptional regulator is a repressor that affects the expression of genes encoding for an ABC transporter probably involved in the uptake of carbohydrates. Furthermore, we have confirmed that some of these genes are encoded mainly by E. faecium clinical strains but not or to a lower extent by commensal strains. Secondly, we studied the mechanisms of protection of a consortium of five commensals bacteria, previously shown to restrict VRE gut colonization in mice. Functional transcriptomics in combination with targeted metabolomics and in vivo assays performed in this thesis indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose. Finally, in vivo RNA-Seq analysis of each bacterial isolate of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the protective effect. Altogether, the results obtained have identified the function of specific genes required by VRE to colonize the gut. In addition, we have identified a specific mechanism by which the microbiota confers protection against VRE colonization. These results could lead to novel therapeutic approaches to prevent infections caused by this pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call