Abstract

Gastrin has significant growth and metabolic effects on colonic mucosal cells. It is, however, not known if gastrin receptors are present on colonic mucosal cells that may directly mediate the reported biological effects of gastrin. In the present studies, the presence of specific gastrin binding sites on colonic mucosal membranes was investigated and the binding sites were further characterized. Crude membranes from colonic mucosa of guinea pigs were analyzed for specific binding to gastrin by our published procedures. A significant number (14.7 +/- 1.8 fmoles/mg protein) of high affinity gastrin binding sites (Kd = 0.49 +/- 0.05 mM) were measured, that were specific for binding gastrin/CCK related peptides and demonstrated negligible binding affinity for all other unrelated peptides examined. In addition a large number of low-affinity (Kd = approximately 1 microM) binding sites were present. In order to further characterize the molecular size of gastrin binding proteins, we used the chemical cross-linking methods, and observed at least four bands of gastrin binding proteins (GBPs) (approximately 33, 45, 80 and 250 KDa), both under reducing and non-reducing conditions, indicating that these proteins were not sub-units of forms linked by disulfide bonds. Interestingly, majority of the specific gastrin binding sites (approximately 70%) were present on the 45 KDa protein, unlike other target cells of gastrin. The presence of N- and O-linked glycosylated moieties were indicated on the 45 KDa protein, based on enzymatic de-glycosylation studies.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.