Abstract

Vibration measurement, as a non-intrusive technique, was used to characterize the hydrodynamics of fluidized beds. A series of experiments were performed in a lab-scale fluidized bed using two accelerometers for measuring the vibration of the bed and a pressure probe for measuring pressure fluctuations. The output signals were analyzed by statistical methods. The results show that the vibration technique can predict transition velocities at high velocities and indicate that analyzing the vibration signals can be an effective non-intrusive technique to characterize the hydrodynamics of fluidized beds. It was shown that transition from bubbling to turbulent velocity can be determined from the variation of standard deviation and kurtosis of vibration signals against superficial gas velocity of the bed. However, this point could be determined only from standard deviation of pressure fluctuations, and not from skewness or kurtosis of pressure fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call