Abstract

GaN quantum discs embedded in AlGaN nanocolumns with outstanding crystal quality and very high luminescence efficiency were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy under highly N-rich conditions. Nanocolumns with diameters in the range of 30--150 nm, with no traces of any extended defects, as confirmed by transmission electron microscopy, were obtained. GaN quantum discs, 2 and 4 nm thick, were grown embedded in AlGaN nanocolumns by switching on and off the Al flux during variable time spans. Strong optical emissions from GaN quantum discs, observed by photoluminescence and cathodoluminescence measurements, reveal quantum confinement effects. While Raman data indicate that the nanocolumns are fully relaxed, the quantum discs appear to be fully strained. These nanostructures have a high potential for application in efficient vertical cavity emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.