Abstract
We investigated the possibility of achieving p-type zinc oxide (ZnO) by RF diode sputtering and gallium–nitrogen co-doping. ZnO:Ga:N thin films were prepared with a different N2 content in Ar/N2 working gas, ranging from 0 to 100%, and at a varying substrate temperature, from room temperature (RT) to 300 °C. A hole conduction with maximum carrier concentration of 2.6 × 1018 cm−3, mobility of 2 cm2/Vs and resistivity of 1.5 Ω cm resulted from deposition at RT with 100% N2. It arose from N incorporation and formation of NO acceptors. In the secondary ion mass spectrometry (SIMS) depth profiles of the co-doped films were observed NO/NO2 negative ions. Average transmittance (including Corning glass substrate) across the visible spectrum varied (60 ÷ 66%) with increasing nitrogen content (50 ÷ 100% N2). As the substrate temperature increased (RT – 300 °C), highly transparent (T ∼72–83%) and conductive (electron concentrations of 1017–1019 cm−3) n-type ZnO:Ga:N films were attained. Reduction of optical band gap (Eg) (∼3.13–3.08 eV) was observed for co-doped ZnO films. Atomic force microscopy (AFM) images revealed that the films grown at RT have roughness of approximately 5.3 nm while roughness of those grown at 300 °C is approximately 3.9 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.