Abstract

Changes in the functional status of mitochondria result in the transcriptional activation of a subset of nuclear-encoded genes in a process referred to as retrograde signaling. In Saccharomyces cerevisiae, this molecular link between mitochondria and the nuclear genome is controlled by three key signaling proteins: Rtg1p, Rtg2p, and Rtg3p. Although the retrograde signaling response has been well characterized in S. cerevisiae, very little is known about this pathway in other fungi. In this study, we selected four species having uncharacterized open reading frames (ORFs) with more than 66% amino acid identity to Rtg2p for further analysis. To determine whether these putative RTG2 ORFs encoded bona fide regulators of retrograde signaling, we tested their ability to complement the defects associated with the S. cerevisiae rtg2Δ mutant. Specifically, we tested for complementation of citrate synthase (CIT2) and aconitase (ACO1) at the transcript and protein levels, glutamate auxotrophy, and changes in the interaction between Rtg2p and the negative regulator Mks1p. Our findings show that all four Rtg2p homologs are functional upon activation of retrograde signaling, although their degree of complementation varied. In addition, all Rtg2p homologs showed a marked reduction in Mks1p binding, which may contribute to their altered responses to retrograde signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.