Abstract

AbstractIn the framework of coupled cell systems, a coupled cell network describes graphically the dynamical dependencies between individual dynamical systems, the cells. The fundamental network of a network reveals the hidden symmetries of that network. Subspaces defined by equalities of coordinates which are flow-invariant for any coupled cell system consistent with a network structure are called the network synchrony subspaces. Moreover, for every synchrony subspace, each network admissible system restricted to that subspace is a dynamical system consistent with a smaller network called a quotient network. We characterize networks such that: the network is a subnetwork of its fundamental network, and the network is a fundamental network. Moreover, we prove that the fundamental network construction preserves the quotient relation and it transforms the subnetwork relation into the quotient relation. The size of cycles in a network and the distance of a cell to a cycle are two important properties concerning the description of the network architecture. In this paper, we relate these two architectural properties in a network and its fundamental network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.