Abstract
The biological relevance of microRNAs (miRNAs) in health and disease significantly relies on specific combinations of many simultaneously deregulated miRNAs rather than the action of a single miRNA. The characterization of these specific miRNAs modules is a fundamental step in maximizing their use in therapy. This is extremely relevant because their combinatorial attributes can be practically exploited. Described here is a method to define a specific miRNA signature relevant to the control of oncogenic chromatin repressors in glioblastoma. The approach first defines a general group of miRNAs that are deregulated in tumors in comparison to normal tissue. The analysis is further refined by differential culture conditions, underscoring a subgroup of miRNAs that are co-expressed simultaneously during specific cellular states. Finally, the miRNAs that satisfy these filters are combined into an artificial polycistronic transgenes, which is based on a scaffold of naturally existing miRNA clusters genes, then used for overexpression of these miRNA modules into receiving cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.