Abstract

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call