Abstract

Snake-inspired locomotion is much more maneuverable compared to conventional locomotion concepts and it enables a robot to navigate through rough terrain. A rectilinear gait is quite flexible and has the following benefits: functionality on a wide variety of terrains, enables a highly stable robot platform, and provides pure undulatory motion without passive wheels. However, historically speed has been a limitation for the locomotion type. In this paper, Fused Deposition Modeling (FDM) is utilized to reduced the weight and thereby increase the speed potential of a snake-inspired robot design based on a rectilinear gait. FDM also provides feasibility for development of complex and capable mechanism designs for executing rectilinear motion. The new design is analyzed, fabrication and evaluated based on various anchoring material velocity experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.