Abstract

In our previous study, a series of experiments had been conducted by applying different pressure depletion rates in a 1 m long sand-pack. In this study, numerical simulation models are built to simulate the lab tests, for both gas/oil production data and pressure distribution along the sand-pack in heavy oil/methane system. Two different simulation models are used: (1) equilibrium black oil model with two sets of gas/oil relative permeability curves; (2) a four-component nonequilibrium kinetic model. Good matching results on production data are obtained by applying black oil model. However, this black oil model cannot be used to match pressure distribution along the sand-pack. This result suggests the description of foamy oil behavior by applying equilibrium black oil model is incomplete. For better characterization, a four-component nonequilibrium kinetic model is developed aiming to match production data and pressure distribution simultaneously. Two reactions are applied in the simulation to capture gas bubbles status. Good matching results for production data and pressure distribution are simultaneously obtained by considering low gas relative permeability and kinetic reactions. Simulation studies indicate that higher pressure drop rate would cause stronger foamy oil flow, but the exceed pressure drop rate could shorten lifetime of foamy oil flow. This work is the first study to match production data and pressure distribution and provides a methodology to characterize foamy oil flow behavior in porous media for a heavy oil/methane system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.