Abstract

This article presents the structural and thermal characterization of fly ash, the waste from blast furnace slag and the glass hull, generated as common residues in industry, which cannot be recycled easily or destroyed in a simple and fast way. In the particular case of fly ash, at present are being used as a lightweight aggregate in the production of cement, concrete and additive in the production of glass and glass ceramics. As far as the slag and hull, are being used as additives for the asphalt and concretes, however its use still is restricted, reason why its use in alternative ways are necessary. Initially the chemical composition of residues was established, determining that the fly ashes contains SiO2, Al2O3 and Fe2O3 oxides; 90% of the total composition, was confirmed by X-ray diffraction analysis. As minor constituents, small percentages of Mg, P, S, K, Na and Ti were found. For the slag case, the phases of Fe3O4, Ca3Mg (SiO2)4 and Ca(MgAl)(Si,Al)2O6 were identified, observing the presence of amorphous phase higher than 94% of the total phase of the system. Meanwhile, the glass hull sample showed a higher percentage of 95% amorphicity, mainly identifying a weak signal associated with silicon oxide SiO2. The thermal analyses of the samples, exhibit a decrease in mass for samples between 25-1000°C was observed, which can be attributed to different physical-chemical events that occur in the materials. The heat flow for each sample is related with the removal of the water retained by the physisorption processes around 92-110°C in all cases. With this previous characterization of the precursors, a sample was composed using 70% fly ash, 10% slag and 20% of glass hull was composed and treated at 1200°C/1.5 hours, obtaining a dense black glassy material for potential applications in field of the glass ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call