Abstract

Partial replacement of hydrating Portland cement by fly ash produces competing effects: it contributes calcium hydrate silicate (C-S-H) gel through the pozzolanic and alkali-activated reactions but dilutes the contribution of the main Portland cement reaction. To investigate this, two neutron-scattering methods were applied to density-fractionated lignite-type and bituminous-type fly ash/Portland cement pastes (20% by mass replacement). Small-angle neutron scattering (SANS) measured the effect of the fly ash on the fractal C-S-H microstructure, whereas inelastic neutron scattering (INS) measured the pozzolanic reaction in terms of calcium hydroxide (CH) consumption. The CH consumption increased with the effective density fraction, and the fractal microstructure evolved more slowly for all fly ash mixes compared with the pure cement control. However, gel volume measured by SANS showed no correlation with the CH consumption measured by INS. The implications of these results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call