Abstract

Introduction. Enamel microabrasion is a procedure used for removing a superficial layer of enamel that has some alteration of color and/or texture caused by dental fluorosis. The purpose of this study was to compare the microhardness and micromorphology of the fluorotic enamel surface after microabrasion with 6.6% hydrochloric acid and silica or 18% hydrochloric acid and evaluate the effect of desensitizing agent exposure on the treated enamel. Materials and Methods. Twenty anterior teeth with moderate fluorosis were divided into two groups: 1) Perla-Dent® group and 2) Opalustre® group. Each buccal surface of incisors was sectioned to obtain samples 3x3 mm. The samples were then mounted in acrylic blocks. The enamel surface of the blocks was polished, after the microabrasion materials and desensitizing agent were applied according to the manufacturer's instructions. All samples were analyzed by Vickers microhardness tester and scanning electron microscopy (SEM). Results. Both experimental groups presented a decrease in the microhardness values, with statistically significant differences (p<0.0001) when comparing the baseline and after treatments values. To compare the microhardness values after both microabrasion and desensitizing treatment in the study groups, it was observed that the Perla-Dent® group obtained lower values than the Opalescence® group with a statistically significant difference (p<0.0001). The representative images of study groups in SEM showed the enamel surface morphology after Perla-Dent® treatment more irregular and a very marked relief than that observed in enamel surface morphology after Opalustre® treatment. Conclusion. The surface of the enamel was more affected with Perla-Dent® treatment than with Opalustre® treatment and the placement of UltraEz® agent does not recover its baseline microhardness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.