Abstract

Two-phase flows are complex and unpredictable in nature, commonly encountered in a majority of fluid transport systems. The accurate measurement of two-phase flow is critical for a wide range of applications from wet stream to multiphase flows. There are different methods to meter two-phase flow in various industries. One approach is to produce a flow meter that does not require the individual flow components to be separated and measured separately. This goal can be met if a homogenized mixture is produced which can be measured by a standard single phase flow meter. The slotted orifice plate was invented as a flow meter for single phase flows, it is independent upon upstream flow conditions. Slotted orifice plate flow meter's utilization in two-phase flow revealed that it is highly capable of working as a flow conditioner transforming most of the multiphase flow regimes into a fairly uniform mixture. This study measures how the relative homogeneity of an air/water mixture varies downstream of the slotted plate in a horizontal pipe for various upstream conditions including elongated bubble and slug flow regimes using electrical resistance tomography (ERT). According to this study, the optimal location with a maximum homogeneity was determined to be between 1.5 and 2.5 pipe diameters downstream of the slotted orifice plate. This indicates that placing a slotted orifice plate at the obtained distance upstream of another flow meter such as a venturi coupled with a density measuring device like a radiation based densitometer or an electrical impedance device will help in obtaining accurate multiphase flow rate measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call