Abstract
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) generated from fuel-rich combustion of ethylene-naphthalene mixtures in a jet-stirred-plug-flow reactor were chemically characterized by combined mass spectrometric techniques to yield product composition data that cover the molecular mass region from simple PAHs (naphthalene, 128 u) to large molecules comparable in molecular size (1792 u) to nanoparticles of soot. Two techniques based on atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) were investigated: (1) APCI-MS combined with high-performance liquid chromatography through a heated nebulizer interface was found suitable for PAHs up to C36 (448 u). (2) For the characterization of larger PAHs beyond C36, direct liquid introduction (DLI) of sample into an atmospheric-pressure chemical ionization mass spectrometer through a heated nebulizer gave protonated molecular ions for PAHs over the m/z 400-2000 range. Although unequivocal elemental composition information is unattainable from the unit-resolution DLI/APCI-MS data, by starting with structural data from identified C16 to C32 PAHs, and applying PAH molecular growth principles, it was possible to generate PAH molecular maps from the DLI/APCI-MS data from which values for the elemental composition could be derived for all major peaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.