Abstract
Flake boron nitride (BN) in large yield was successfully synthesized at low temperature from the combustion synthesized precursor. The precursor was prepared by a low-temperature (350 °C) combustion synthesis (LCS) method using nitric acid (HNO3), urea (CO(NH2)2), boric acid (H3BO3), and glucose (C6H12O6·H2O) as starting materials. The precursor consists of B2O3 and amorphous carbon and the morphology is composed of blocks with average diameters of about 10 μm by statistical methods using SEM at different fields. Then BN was synthesized at 900 °C in NH3 at a heating rate of 5 °C min−1. The as-prepared BN possesses a flake morphology and high specific surface area up to 936 m2 g−1. It also has high density structural defects and abundant –NH2/–OH groups. The surface groups improve its water wettability and electronegativity, which contributes to the rapid and selective adsorption performance, especially towards the cationic dyes. When 4 mg of the sample was added into a 100 mL RhB solution with an initial concentration of 5 mg L−1, 95% of the RhB was removed within 1 min and the adsorption capacity is 125 mg g−1. Importantly, the sample can be regenerated by heating at 400 °C in air.
Highlights
Efficient cleaning of water resources from various contaminants is one of the major goals in environmental protection
When 4 mg of the sample was added into a 100 mL RhB solution with an initial concentration of 5 mg L−1, 95% of the RhB was removed within 1 min and the adsorption capacity is 125 mg g−1
The results indicate that the flake boron nitride (BN) can efficiently and selectively adsorb cationic dyes
Summary
Efficient cleaning of water resources from various contaminants is one of the major goals in environmental protection. Various synthetic methods have already been adopted to prepare porous BN, such as carbothermal reduction nitridation [13], vapor deposition [14], direct combination of boron and nitrogen [15], and hard template-based methods [16], etc In addition to these traditional methods, other methods were developed to synthesize BN recently. Li et al reported a chemical activation method to change the surface property of BN for enhanced cationic dye removal performance [20] This offers us a hint to improve the selective and effective adsorption performance of BN by combining the novel synthetic methods for porous materials with surface modification. Its surface property was further modified during material synthesis without any post reaction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.