Abstract

The hippocampal input to the nucleus accumbens was studied by correlative electrophysiological and anatomical techniques in acutely prepared rabbits. Field and extracellular unitary potentials were recorded in the nucleus accumbens following ipsilateral fimbria stimulation. Analysis of the components of the field response was based on the relevant correlations with extracellular unitary activity. The cellular types that are the recipients of the hippocampal projection were determined by combined intracellular horseradish peroxidase (HRP) and Golgi analyses. The distribution of the hippocampal input was determined by combined field potential and current source density analyses. It was found that the ipsilateral fimbria projection was distributed to the dorsal two-thirds of the nucleus, with the projection being heaviest in the more caudal portions of the nucleus. The negative (N) component of the field response was studied by correlating its behavior with the appropriate extracellular unitary recordings. It was concluded that the N-component represented an envelope of monosynaptically activated action potentials. The positive (P) component of the field response throughout the nucleus accumbens was studied pharmacologically with the iontophoretic administration of bicuculline. The P-components, in both the dorsal and ventral regions of the nucleus, were diminished by bicuculline application, indicating that this potential results from the activation of gamma-aminobutyric acid (GABA) mechanisms. The cell populations that are the targets for the hippocampal projections were studied by the technique of intracellular staining with HRP. These results were correlated with the findings of a Golgi analysis. Two distinct cell types were found to respond in a monosynaptic manner to ipsilateral fimbria stimulation. The most common of the two were the small-to medium-sized spiny neurons, and they were distributed throughout the nucleus. These cells have a spherical dendritic arrangement. The second, and most distinctive, of the cell types were the large aspiny neurons. These cells were distributed medially and caudally in the nucleus. Two of the outstanding features of these cells were the expanse of their dendritic domains and the fact that axons originated from relatively remote portions of the dendrites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.