Abstract

The present paper shows a direct comparison of IR spectra of adsorbed NO on two catalyst systems (Fe-silicalite and Fe-ZSM-5), recorded in a flow-through cell (in operando, where NO is carried by an excess of inert gas) and static cell (in situ, where a given pure NO equilibrium pressure is dosed). A progressive NO poly-adsorption is observed in the static cell upon increasing the NO equilibrium pressure (from Fe(2+)...(NO)(2) to Fe(2+)...(NO)(3)), while predominantly Fe(2+)...NO adducts are observed in the flow-through cell. By comparing literature spectra, it is shown that these spectral differences are intrinsically inherent to the two different experimental approaches. The two experimental set-ups are able to observe preferentially only a part of the total Fe species present on Fe-zeolites. Water contamination experiments employing different experimental conditions (order of dosage, co-dosage, different NO/H(2)O ratios) did not reproduce in the static environment the IR spectra collected with the dynamic set-up. The spectral differences could have a thermodynamic origin and be related to different adsorption enthalpies of mono- and di-nitrosyl complexes of the two Fe(2+) families and to the different NO partial pressure adopted in the two experimental configurations. These considerations have important consequences for the conclusions reached by different research groups on the structure of active Fe sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.