Abstract
Abstract Radioactive waste is usually sealed in steel canisters surrounded by a layer of compacted clay back-fill, and permanent buried in a deep geological repository. Unavoidably, the radionuclide contaminants can be released from repository and then sorbed onto the waste container corrosion products or the Fe-rich minerals. Herein, we characterized the Fe(III)-saturated montmorillonite (Fe(III)-MMT) by using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET), and found the changes of the surface incorporating Fe(III) and surface micropores. The sorption of U(VI) on Fe(III)-MMT and Na-montmorillonite (Na-MMT) was investigated by batch experiments. The larger surface area and cation exchange capacity, and the existence of Fe(III) (hydr)oxide phases in Fe(III)-MMT contributed greatly to its sorption capacity. In the whole pH range, the sorption of U(VI) on Fe(III)-MMT was higher than on Na-MMT, and the sorption was strongly depended on pH and ionic strength. The sorption isotherms were simulated well by the Langmuir and Freundlich models. The thermodynamic parameters (ΔH, ΔS and ΔG) calculated from the temperature dependent sorption isotherms indicated that the sorption of U(VI) on Fe(III)-MMT was an endothermic and spontaneous process. The observations suggest that the interactions between U(VI) and Fe(III)-MMT are important in controlling U(VI) retention. The phenomena need to be considered in risk assessment and reactive transport modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.