Abstract

An accurate means of non-invasive condition monitoring of the popular industrial drive, three-phase squirrel-cage induction motor, can help to avoid unscheduled maintenance downtime and loss. Faults like air-gap eccentricity can exist even in a newly assembled drive and hence may co-exist with other internal defects. Despite it being a possible situation, the occurrence of simultaneous faults has seldom been studied. Therefore, there is a need for identifying fault signatures of combined fault conditions in a non-invasive manner. This paper presents a detailed model-based study on a three-phase squirrel-cage induction motor with the simultaneous existence of broken rotor-bar and air-gap mixed eccentricity faults using spectral analysis of stator current, instantaneous power, and estimated air-gap torque signals. The modelling of the machine is done using the Multiple Coupled Circuit method and modified to model the presence of the combined fault conditions. A comparative evaluation with various fault conditions and their severity is carried out by spectral analysis, and unique slip-dependent frequency components are identified in the spectra of diagnostic signals. This fault characterization is the most significant contribution of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call