Abstract
Fatty acid (FA) and triacylglycerol (TG) composition of natural oils and fats intake in the diet has a strong influence on the human health and chronic diseases. In this work, non-aqueous reversed-phase (NARP) and silver-ion high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection and gas chromatography with flame-ionization detection (GC/FID) and mass spectrometry detection are used for the characterization of FA and TG composition in complex samples of animal fats from fallow deer, red deer, sheep, moufflon, wild boar, cock, duck and rabbit. The FA composition of samples is determined based on the GC/FID analysis of FA methyl esters. In total, 81 FAs of different acyl chain length, double bond (DB) number, branched/linear, cis-/ trans- and DB positional isomers are identified. TGs in animal fats contain mainly monounsaturated and saturated FAs. High amounts of branched and trans-FAs are observed in the samples of ruminants. In NARP mode, individual TG species are separated including the separation of trans- and branched TGs. Silver-ion mode provides the separation of TG regioisomers, which enables the determination of their ratios. Great differences in the preference of unsaturated and saturated FAs in the sn-2 position on the glycerol skeleton are observed among individual animal fats. Unsaturated FAs are preferentially occupied in the sn-2 position in all animal samples except for wild boar with the strong preference of saturated FAs in the sn-2 position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.