Abstract

Structural health monitoring (SHM) of fatigue cracks is essential for ensuring the safe operation of engineering equipment. The acoustic emission (AE) technique is one of the SHM techniques that is capable of monitoring fatigue-crack growth (FCG) in real time. In this study, fatigue-damage evolution of Hadfield steel was characterized using acoustic emission (AE) and machine learning-based methods. The AE signals generated from the entire fatigue-load process were acquired and correlated with fatigue-damage evolution. The AE-source mechanisms were discussed based on waveform characteristics and bispectrum analysis. Moreover, multiple machine learning algorithms were used to classify fatigue sub-stages, and the results show the effectiveness of classification of fatigue sub-stages using machine learning algorithms. The novelty of this research lies in the use of machine learning algorithms for the classification of fatigue sub-stages, unlike the existing methodology, which requires prior knowledge of AE-loading history and calculation of ∆K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call