Abstract

The purpose of this study was to understand how the montmorillonite (MMT) nanoclay influences physical and mechanical properties of thermoplastic starch (TPS), which was produced by a conventional extrusion procedure. MMT nanoclay was added at 0, 4, and 8 % (w/w) concentrations. Transmission electron microscopy (TEM) showed most MMT platelets existed in tactoid structure in the starch matrix. In addition, FTIR spectra indicated TPS/MMT nanocomposites kept chemically stable after the extrusion. Tensile strength (TS) was about 7.0 MPa, while elongation-at-break (E) and elastic modulus (EM) were about 52 % and 32–41 MPa, respectively. Moisture sorption behaviour of the samples was well described by GAB and BET models. Thermal property tests exhibited the glass transition temperature (T g ) of the nanocomposites decreased with increasing MMT from 0 to 8 %, indicating MMT nanoclay had a plasticization effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call