Abstract

Penicillin G acylase (PGA) which catalyses penicillin G hydrolysis reaction is a key enzyme for the industrial production of penicilin G derivatives used in therapeutics. A new local strain of Bacillus subtilis BAC4 was found capable of producing extracellular PGA. However, characteristics of this extracellular PGA are not known. The goal of this research was to characterize the extracellular PGA produced by B. subtilis BAC4. Enzyme production was carried out by batch fermentation, followed by enzyme purification and characterization of the PGA. The PGA activity was determined by the Kornfeld method, with optimal activity for hydrolysing penicillin G observed at 43 °C and pH 8.5. The activation energy of penicillin G hydrolysis by the PGA of B. subtilis BAC4 was determined as 4.9 kcal.mol −1 and V max and K m values were found to be 0.7 μmole.min −1 .mg −1 and 3.5 mM respectively. PGA catalytic activity was competitively inhibited by phenylacetic acid with an inhibition constant, K i(PAA) , of 347.2 mM. It was concluded that the extracellular PGA of B. subtilis BAC4 can hydrolyse penicillin G efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.