Abstract

Brain microdialysis was used to characterize extracellular gamma-aminobutyric acid (GABA) in the substantia nigra reticulata (SNR) of freely moving rats. The extracellular GABA in the SNR was characterized using acutely implanted probes (4-8 h after surgery; day 1) and chronically implanted probes (24 h after surgery; day 2). 3-Mercaptopropionic acid, a glutamic acid decarboxylase inhibitor, was used to identify GABA. This drug induced an immediate decrease in the extracellular GABA levels to 40% of basal values, suggesting that the detected GABA is, at least in part, newly synthesized. The basal levels of extracellular GABA measured either on day 1 or day 2 were not affected by infusion of micromolar amounts of tetrodotoxin. Therefore, a direct coupling between GABA dialysate concentrations and nerve-impulse flow does not seem to exist. Infusion of the GABA uptake inhibitor nipecotic acid (0.5 mmol/l) resulted in a 4-fold increase in the dialysate levels of GABA lasting at least for 3 h on both days. K+ stimulation (60 mmol/l) increased extracellular GABA levels in the SNR to 450% of basal values. This effect again did not differ significantly on day 1 and day 2. The origin of the extracellular GABA in the SNR, as recorded by microdialysis under the two experimental conditions, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call