Abstract

Plants produce diverse secondary metabolites in response to different environmental cues including pathogens. The modification of secondary metabolites, including acylation, modulates their biological activity, stability, transport, and localization. A plant-specific BAHD-acyltransferase (BAHD-AT) gene family members catalyze the acylation of secondary metabolites. Here we characterized the rice (Oryza sativa L.) BAHD-ATs at the genome-wide level and endeavor to define their plausible role in the tolerance against Rhizoctonia solani AG1-IA. We identified a total of 85 rice OsBAHD-AT genes and classified them into five canonical clades based on their phylogenetic relationship with characterized BAHD-ATs from other plant species. The time-course RNA sequencing (RNA-seq) analysis of OsBAHD-AT genes and qualitative real-time polymerase chain reaction (qRT-PCR) validation showed higher expression in sheath blight susceptible rice genotype. Furthermore, the DNA methylation analysis revealed higher hypomethylation of OsBAHD-AT genes that corresponds to their higher expression in susceptible rice genotype, indicating epigenetic regulation of OsBAHD-AT genes in response to R. solani AG1-IA inoculation. The results shown here indicate that BAHD-ATs may have a negative role in rice tolerance against R. solani AG1-IA possibly mediated through the brassinosteroid (BR) signaling pathway. Altogether, the present analysis suggests the putative functions of several OsBAHD-AT genes, which will provide a blueprint for their functional characterization and to understand the rice-R. solani AG1-IA interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.