Abstract

Properties of nuclear and cytosolic estrogen receptors (ERs) were examined in a new transplantable rat pituitary tumor designated as MtT/F84, of which growth is stimulated by estrogen. The optimal incubation conditions of both nuclear and cytosolic exchange were found to be at 37 degrees C for 15 min and at 25 degrees C for 2 hr, respectively. Molybdate increased a specific binding of estradiol (E2) as determined by [3H]E2-binding assay. Sucrose density gradient analyses of crude cytosol revealed specific peaks of radioactivity in both 4-5S and 8-10S areas. However, only a single 5S peak was present in 0.4M KCl-extractable nuclear ER. Molybdate also enhanced the stability of cytosolic 8-10S receptor in density gradient sedimentation behavior. Scatchard plot analysis for nuclear ER yielded a single class of binding sites with a dissociation constant (Kd) of 0.317 nM and the maximum number of binding sites (NBSmax) of 25.4 fmol/mg protein. Saturation analysis of [3H]estrogen binding to cytosolic ER also yielded a straight line with a Kd of 0.146 nM and NBSmax of 58.5 fmol/mg protein. The effect of E2 administration on the intracellular distribution of ER was also examined. A marked disappearance in the ER binding in cytosol with a concomitant increase in binding in nuclear fraction was found after the administration of the unlabeled E2 in vivo, whereas the total number of ER did not change. Thus, it is concluded that properties of ER in the MtT/F84 were very similar to those in other target organs such as uterus and pituitary gland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.