Abstract

Lactobacillus fermentum colonizing gastrointestinal and urogenital tracts of humans and animals is widely used in manufacturing of fermented products and as probiotics. These bacteria may function as vehicles of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Therefore, monitoring and control of transmissible antibiotic resistance determinants in these microorganisms is necessary to approve their safety status. The aim of this study was to characterize erythromycin and tetracycline resistance of L. fermentum isolates and to estimate the potential transfer of resistance genes from lactobacilli to the other Gram-positive and Gram-negative bacteria. Among six L. fermentum strains isolated from human feces and commercial dairy products, five strains demonstrated phenotypic resistance to tetracycline. PCR screening for antibiotic resistance determinants revealed plasmid-located tetracycline resistance genes tet(K) and tet(M) in all strains and erythromycin resistance genes erm(B) in the chromosome of L. fermentum 5-1 and erm(C) in the plasmid of L. fermentum 3-4. All tested lactobacilli lacked conjugative transposon Tn916 and were not able to transfer tetracycline resistance genes to Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Acinetobacter baumannii, Citrobacter freundii, and Escherichia coli by filter mating. Staphylococcus haemolyticus did not accept erythromycin resistance genes from corresponding Lactobacillus strains. Thus, in the present study, L. fermentum was not implicated in the spread of erythromycin and tetracycline resistance, but still these strains pose the threat to the environment and human health because they harbored erythromycin and tetracycline resistance genes in their plasmids and therefore should not be used in foods and probiotics.

Highlights

  • Lactobacillus fermentum is a common inhabitant of human gastrointestinal and urogenital tracts where these bacteria are known to exert health-promoting effects [1, 2]. It is naturally present in raw milk, dairy products, and many traditional fermented foods and beverages [3, 4]. Some probiotic isolates, such as L. fermentum RC-14 and L. fermentum 90 TC-4, are already widely used and produced on an industrial scale [5, 6]. e species is listed in the qualified presumption of safety (QPS) published by the European Food Safety Authority (EFSA) [7], and along with other lactic acid bacteria (LAB), it has been generally recognized as safe (GRAS status) by the U.S Food and Drug Administration

  • All tested strains were putatively assigned to L. fermentum species by MALDI Biotyper as sample mass spectra shared the maximum similarity with the reference mass spectrum of L. fermentum from MALDI Biotyper software. is finding was verified by 16S rRNA gene analysis after we determined that sample 16S rDNA sequences had a similarity score of ≥99% with that of reference sequences in the NCBI database classified as L. fermentum

  • Tetracycline resistance common among the human fecal isolates may be explained by the intensive use of tetracyclines, alone or in combination, in medicine for prophylaxis or therapy and in consumed food, which could provide the selective pressure needed for antibiotic-resistant bacteria to develop and spread. e phenotypic profile of antimicrobial

Read more

Summary

Introduction

Lactobacillus fermentum is a common inhabitant of human gastrointestinal and urogenital tracts where these bacteria are known to exert health-promoting effects [1, 2] It is naturally present in raw milk, dairy products, and many traditional fermented foods and beverages [3, 4]. E aim of this work was to comprehensively characterize erythromycin and tetracycline resistance profiles of L. fermentum strains and evaluate the transferability of corresponding resistance genes to other bacteria. Six L. fermentum strains isolated from human feces and commercial dairy products were assayed for susceptibility to erythromycin and tetracycline by the agar disc diffusion method, followed by determination of MICs for these antibiotics by the broth microdilution method. Is study provides a reference for the safety assessment and contributes to the evaluation system of probiotics

Materials and Methods
F: AAGCGGTAAACCCCTCTGAG R: TCAAAGCCTGTCGGAATTGG ermB1-F
F: GCGTGATTGTATCTCACT R: GACGCTCCTGTTGCTTCT F: CGGATAGATAAAGTACGATA R
Results and Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call