Abstract
Long-term primary cultures derived from fetal mouse or rat hypothalamus and choroid plexus were obtained in serum-supplemented and chemically defined media. In order to identify and characterize cell types growing in our cultures, we used morphological features provided by phase-contrast, scanning and transmission electron microscopy. Immunological criteria were recognized, using antibodies against intermediate filament proteins (vimentin, gliofibrillar acid protein, cytokeratin, desmin, neurofilament proteins), actin, myosin, ciliary rootlets, laminin and fibronectin in single or double immunostaining, and monoclonal antibodies known to detect epitopes of ependymal or endothelial cells. Minor cell types such as astrocytes, fibroblasts and endothelial cells were distinguished. Ependymal cells, which exceeded 75% of the cultured cells, were identified by their cell shape and epithelial organization revealed by phase-contrast and transmission electron microscopy, by their apical differentiation evidenced by scanning and transmission electron microscopy, and by certain molecular markers ( e.g. gliofibrillar acid or ciliary rootlet proteins) detected by immunofluorescence. Four ependymal cell types were recognized: choroidal ependymocytes, ciliated and unciliated ependymal cells, and tanycytes. All these cultured ependymal cell types showed a remarkable resemblance to in vivo ependymocytes, in terms of marker expression and ultrastructural features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.