Abstract

Abstract For many years, sedimentary dolomite rocks have been considered to be primarily a replacement product of the calcium carbonate components comprising the original limestone, a process known as secondary replacement dolomitization. Although numerous dolomite formations in the geological record are composed of fine-grained crystals of micritic dolomite, an alternative process, that is, direct precipitation, is often excluded because of the absence of visible or geochemical indicators supporting primary precipitation. In this research, we present a study of a modern coastal hypersaline lagoon, Brejo do Espinho, Rio de Janeiro State, Brazil, which is located in a special climatic regime where a well-defined seasonal cycle of wet and dry conditions occur. The direct precipitation of modern high-Mg calcite and Ca-dolomite mud from the lagoonal waters under low-temperature hypersaline conditions is associated with the activity of microbial organisms living in this restricted environment. The mud undergoes an early diagenetic transformation into a 100% dolomite crust on the margins of the lagoon. The biomineralization process, characterized by the variations of the physico-chemical conditions in this environment during the annual hydrological cycle, is integrated with isotopic analysis to define the early diagenetic processes responsible for the formation of both dolomitic mud and crust. The carbon isotope values indicate a contribution of respired organic carbon, which is greater for the crust (δ 13 C=−9.5‰ Vienna Pee Dee Belemnite (VPDB)) than mud (δ 13 C=−1.2‰ VPDB). The oxygen isotope values reflect a moderate degree of evaporation during mud formation (δ 18 O=1.1‰ VPDB), whereas it is greatly enhanced during early diagenetic crust formation (δ 18 O=4.2‰ VPDB). The clumped isotope formation temperature derived for the Brejo do Espinho mud is 34 °C, whereas it is 32 °C for the crust. These temperatures are consistent with the upper range of measured values during the dry season when the lagoon experiences the most hypersaline conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call