Abstract
Air leakage is an essential factor contributing to overall building performance. It plays a major role in determining energy consumption in harsh climates, particularly in residential buildings, as it represents a significant component of the envelope-induced thermal load. In centrally air-conditioned houses, the HVAC system can substantially alter the pressure distribution across the exterior envelope, reforming the air leakage behavior. Nonetheless, limited information is available to characterize and better understand such behavior to accurately predict building performance and energy consumption toward meeting the emerging requirements for sustainable buildings. This study experimentally investigated the air leakage behavior of a selected sample of centrally air-conditioned typical single-family detached houses in Saudi Arabia. The air leakage behavior was investigated by measuring the overall airtightness and the contribution of the different air leakage paths using the viable method of the blower door test (BDT). The air leakage rate was then calculated using the measured induced pressure across the envelope during the HVAC system operation. Results indicated that the air leakage behavior is significantly altered by the pressurization induced by the central HVAC system, eliminating air infiltration and producing an outward airflow across the entire envelope. The study addresses a current challenge in characterizing envelope air leakage behavior for a common type of house and, thus, would indirectly contribute to more accurate thermal and energy performance assessments. Several aspects were highlighted for consideration when defining the contribution of air leakage to energy consumption prediction and studying air leakage behavior in other types of buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.