Abstract
Protein adsorption can be either endothermic or exothermic depending upon the protein, the sorbent and process conditions. In the case of protein adsorption onto ion-exchange surfaces exothermic adsorption heats are usually characterized as representing the electrostatic interaction between two oppositely charged surfaces. Endothermic adsorption heats are typically characterized as representing protein reconfiguration and/or repulsive interactions between adsorbed molecules. In certain segments of the literature surface dehydration and solution non-idealities have been suggested as possible sources of endothermic heats of adsorption. Each of these phenomena was investigated during studies concerning the adsorption of bovine serum albumin and ovalbumin onto an anion-exchange sorbent. The results demonstrated that electrostatic repulsive interactions between adsorbed molecules appears to be a larger contributor to endothermic heats of adsorption than surface dehydration or solution non-idealities. The presence of mobile phase cations can reduce the magnitude of endothermic adsorption heats by screening repulsive interactions between adsorbed molecules. Although water release was not found to be a major contributor to endothermic adsorption heats, it is likely to be a contributor to the entropic driving force associated with the adsorption of bovine serum albumin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.