Abstract

Ethanol production from direct cellulose fermentation has mainly been described as a strictly anaerobic process. The use of air-tolerant organisms or consortia for this process would reduce the need for prereduction of the medium and also permit continuous feed of aerobic feedstock. To this end, moderately thermophilic (60 °C) consortia of fermentative, cellulolytic bacteria were enriched from 3 distinct environments (manure, marsh, and rotten wood) from a farm in southeast Saskatchewan, Canada. Community phenotypic and metabolic profiles were characterized. Selection methods included direct plating under an aerobic atmosphere and repeated passaging; the methods were designed to select for robust, stable aerotolerant cellulose-degrading communities. Several of the isolated communities exhibited an increase in total cellulose degradation and total ethanol yield when compared with a monoculture of Clostridium thermocellum DSMZ 1237. Owing to stringent selection conditions, low diversity enrichments were found, and many appeared to be binary cultures via density gradient gel electrophoresis analysis. On the basis of 16S rRNA gene sequencing, aerobic conditions selected for a mix of organisms highly related to C. thermocellum and Geobacillus species, while anaerobic conditions led to the development of consortia containing strains related to C. thermocellum with strains from either the genus Geobacillus or the genus Thermoanaerobacter. The presence of a Geobacillus-like species appeared to be a prerequisite for aerotolerance of the cellulolytic enrichments, a highly desired phenotype in lignocellulosic consolidated bioprocessing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.