Abstract

This investigation characterizes electrowetting performance, contact angle hysteresis, contact line pinning force, and adhesion work on digital microfluidic devices with inkjet-printed electrodes. It also demonstrates electrowetting-induced droplet detachment on these devices. Average performance was similar to cleanroom-fabricated devices in all experimental measurements, but variability was persistently higher on inkjet-printed devices. This appears to be consistent with increased defect density and variation in local electrowetting number caused by increased roughness of printed electrodes. This work suggests that inkjet-printed devices are suitable for the study of colloidal transport and deposition under electric fields and electrowetting-induced droplet detachment when accompanied by rigorous uncertainty analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.