Abstract

Traumatic injuries can interrupt muscle contraction by damaging the skeletal muscle and/or the peripheral nerves. The healing process results in scar tissue formation that impedes muscle function. Electrospinning and metal nanoparticles (Nps) can create a scaffold that will trigger muscle cell elongation, orientation, fusion, and striation. Poly(L-lactic acid) (PLLA) and gold (Au) Nps were electrospun to create three composite scaffolds, 7% Au-PLLA, 13% Au-PLLA and 21% Au-PLLA, and compared to PLLA alone. The scaffolds had a conductivity of 0.008 ± 0.003 S/cm for PLLA, 0.053 ± 0.015 S/cm for 7% Au-PLLA, 0.076 ± 0.004 S/cm for 13% Au-PLLA and 0.094 ± 0.037 S/cm for 21% Au-PLLA. Next, a cell study was conducted with rat primary muscle cells and all three Au-PLLA scaffolds. The first cell study showed low cell proliferation on all three of the Au-PLLA scaffolds; however, the second cell study showed that this was not due to Au Nps toxicity. Instead, low cell proliferation may be a marker for myotube differentiation and fusion. Values for the elastic modulus and yield stress for the Au-PLLA scaffolds on days 0, 7, 14, 21 and 28 were much higher than those for skeletal muscle tissue. Therefore, lower amounts of Au Nps may be utilized to create a biodegradable, biocompatible and conductive scaffold for skeletal muscle repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.