Abstract

ABSTRACTCIGS thin films were irradiated with 100 or 250 keV electrons to reveal the radiation defect by analyzing PL measurement. The PL intensity decreased due to non-radiative recombination defects induced by electron irradiation. Furthermore, the intensity 0.8 eV peak of the PL spectrum was observed from CIGS films irradiated with 250 eV electrons and is said to correspond to In-antisite defects in CIGS materials. The defects can usually change into InCu-VCu complex defects combined with VCu, since the formation energy of the complex defect is lower than that of each defect. Cu interstitial defects induced by 250 keV electron irradiation would diffuse to VCu of the complex defect, whereupon the complex defect might become an In-antisite defect due to 250 keV electron irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.