Abstract

We have formed high density nanodots of nickel silicide (NiSi) on ultrathin SiO2 and characterized their electronic charged states by using an AFM/Kelvin probe technique. Si quantum dots (Si-QDs) with an areal dot density of ~2.5x1011cm-2 were self-assembled on ~3.6nm-thick thermally-grown SiO2 by controlling the early stages of LPCVD using pure SiH4 gas. Subsequently, electron beam evaporation of Ni was carried out as thin as ~1.7nm in equivalent thickness at room temperature and followed by 300°C anneal for 5min in vacuum. XPS and AFM measurements confirm the formation of NiSi dots with an average dot height of ~8nm. After removal of Ni residue on SiO2 by a dilute HCl solution, bias conditions required for electron charging to NiSi dots were compared with those to pure Si-QDs dots and Ni dots. The surface potential changes stepwise with respect to the tip bias due to multistep electron injection and extraction of NiSi nanodots. In addition, it is confirmed that charge retention characteristics of NiSi dots are superior to those of Si-QDs with the almost same size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.