Abstract
BackgroundGlobally, the cultivation of cotton is constrained by its tendency for extended periods of growth. Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change. In the current study, a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity. The study aimed to identify genotype(s) that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index (MTSI) and multi-trait genotype-ideotype distance index (MGIDI).ResultsMTSI analysis revealed that out of the 20 genotypes, three genotypes, viz., NNDC-30, A-2, and S-32 accomplished well in terms of early maturity traits in two seasons. Furthermore, three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%. The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening. The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings. However, there were negative gains for traits related to flowering and boll opening.ConclusionThe study identified three genotypes exhibiting early maturity and accomplished well under different planting densities. The multivariate methods (MTSI and MGIDI) serve as novel approaches for selecting desired genotypes in plant breeding programs, especially across various growing environments. These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.