Abstract

The dynamics of renal autoregulation are modeled using a modified Volterra representation called the fixed pole expansion technique (FPET). A data dependent procedure is proposed for selecting the pole locations in this expansion that enables a reduction in model complexity compared to standard Volterra models. Furthermore, a quantitative characterization of frequency dependent features of the renal autoregulatory response is enabled via the model's pole locations. The utility of this approach is demonstrated by applying the modeling technique to renal blood pressure and renal blood flow measurements in conscious rats. The model is used to characterize the myogenic autoregulatory response in control rats and rats whose renal autoregulation has been impaired by calcium channel blockers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.