Abstract

The accumulation of dust and subsequent mud formation on solid surfaces in the humid environment adversely affects the optical, texture and mechanical properties of solid surfaces. The aim of this study was to provide a comprehensive analysis of environmental dust and dried mud and their impact on protective transparent covers of PV modules. Polycarbonate wafers and glass have been used as protective covers for PV modules. The dust has been collected from PV modules in the area of Dhahran, Kingdom of Saudi Arabia. Morphological and elemental analyses of the collected dust have been performed using Scanning Electron Microscopy-Energy-Dispersive Spectroscopy (SEM-EDS), while the particle size distribution has been analyzed using Dynamic Light Scattering (DLS) method. Qualitative analysis using Fourier Transform Infrared Spectroscopy (FTIR) has been conducted to determine the major and minor constituent minerals present in the dust sample. Mud solution has been prepared by suspending dust particles in deionized water which is then sprayed on transparent glass and polycarbonate substrates. The dried mud film has been analyzed employing SEM-EDS, X-ray diffraction, and UV–visible spectroscopy. Microtribometer analysis performed on dried mud films demonstrates that the tangential force required to remove the dry mud from glass substrate is comparatively higher as compared to that needed for the polycarbonate substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.